Automated Analysis of a l.argc-Scale Sky Survey:
The SKI CAT System

Usama M. Yayyad Nicholas Weir anti S. G. Djorgovski
Al Group MIS 525-3660 Department of Astronomy
Jet Propulsion I.aboratory M/S 105-24
Cadlifornia Institute of ~'ethnology Californialnstitute of Technology
Pasadena, CA 9] 109 Pasadena, CA 91125
1ayyad @aig.jpl.nasa.gov {weir,george } @deimos.caltech. edu

ABSTRACT

We describe the application of decision tree based classification techniques to the
development of an automated tool for the reduction of alarge scientific data set. The
2nd Palomar Obscrvatory Sky Survey (1'0SS-11) provides comprehensive coverage
of the northern celestial hemisphere in the form of digitized photographic plates
whose quality will probably not be surpassed in the next ten to twenty years. The
images arc expectedto contain on the order of 107 galaxies and 108 stars.
Astronomers wish to determine which of these sky objects belong to various
classes of galaxicsand stars. Thesize of this data set precludes manual analysis.
Our approach is to develop asoftware system which integrates the functions of
independently developed techniques for image  processing, data classification, and
database management. Public domainimage processing routines arc used to
identify sky objects and to extract a set of basic featurés {or each object. These
features arc used to select a uscful and robust set of attributes for classifying sky
objects. The GID3* anti O-BTree decision tree learning agorithms, in conjunction
with the RUI.ER system for statistically pruning and merging multiple trees, are
used to classify the detected objects. The results indicate that our approach is well-
suited to the problem. Using higher resolution image sources covering minute
portions of the survey, the learning algorithms produced classifiers that can classify
objects in the survey that arc too faint for visual classification with an accuracy level
of about 94%. Not only docs thisincrease the number of objects in the final catalog
by three-fold (75% of objects in animageare faint), it allowsus to catalog
classified sky objects that arc at least onc magnitude fainter than objects classified
in sky surveys to date. SKICA'T" represents a system in which machine learning
played a powerful and enabling role, and solved a difficult, scientifically significant
problem. The primary benefits of the approach arcincreased data reduction
throughput, repeatability, and consistency of classification.

Keywords: Machinel.carning Application (large-scale), decision tree learning,
Scientific Data Analysis, Tmage Databases.




1. INTRODUCTION

in this paper we present an application of machine lemming techniques to the automation of the
task of cataloging sky objects in digitized sky images. The Sky Image Classification and Archiving
Tool (SKICAT) is being developed for use on the images resulting from the 2nd Palomar
Observatory Sky Survey (POSS-11) conducted by the California Institute of Technology (Caltech).
The photographic plates collected from the survey are being digitized at the Space Telescope Science
Institute (STScl). This process will result in about 3,000 digital images of roughly 23,0002 pixcls!
each. The survey consists of over 3tcrabytes of data containing on the order of 10’galaxies, 10°
stars, and 10° quasars.

The first step in analyzing the results of a sky survey is to identify, measure, and catalog the
detected objects in the image into their respective classes. Once the objects have been classified,
further scientific analysis can proceed. For example, the resulting catalog may be used to test
models of the formation of large-smlc structure in the universe, probe galactic structure from star
counts, perform automatic identifications of radio or infrarcd sources, and so forth. The task of re-
ducing the images to catalog entries is alaborious time-consuming process. A manual approach to
constructing the catalog implies that many scientists nced to expend large amounts of time on a vi-
sually intensive task that may involve significant subjective judgment. The goal of our project isto
automate the process, thus alleviating the burden of cataloging objects from the scientist and
providing a more objective methodology for reducing the data sets. Another goal of thiswork is to
classify objects whose intensity (isophotal magnitude) is too faint for recognition by inspection,
hence requiring an automated classification procedure. Faint objects constitute the majority of
objects on any given plate. We target the classification of objects that arc at least onc magnitude
fainter than objects classified in previous surveys using comparable photographic material.

The goals of this paper arc:

1. to introducc the machine learning techniques wc used and compare their performance to other’
alternatives such as neural networks,
2.to give agenera, high-level description 01 the current application domain.
3.to report on the successful results Which exceeded our initial goals for this problem.
Wc therefore do not provide. the details of either the lemming algorithms or the technical aspects of the
domain. Wc aim to point out an instance where the learning algorithms provedtoa be useful and
powerful tool in the automation of scientific data analysis.

2. MACHINE I EARNING BACKGROUND

The growing number of large diagnostic and scientific databases provides an important niche
for machine learning techniques. A database that stores instances of diagnostic tasks is typically
accessed by keyword or condition look up. As the size of the database grows, such an approach
becomes ineffective Since a query may easily return hundreds of matches making simple case-based
usage impractical. For large scientific databases the problem is to search for and detect patterns of
interest, or to perform prc-processing necessary for subsequent analysis. Sizes are now becoming
too large for manual processing. I.carning techniques can Serve as effective tools for aiding in the
analysis, red uction, and visualization of large scientific databases.

2.1. INDUCTION OF D ECISION TREE §

A particularly efficient method for extracting rules from data isto generate a decision tree
[Brei84, Quin86]. A decision tree consists of nodes that are tests on the attributes. The outgoing
branches of a node correspond to all the possible outcomes of the test at the node. The examples at a
node in the tree are thus partitioned along the branches and cach child node gets its corresponding
subset of examples. A popular algorithm for gencrating derision trees is Quinlan's 1D3[Quin&6]
with extended versions called C4[Quin90)].

I Liach pixel consists of 16 bits of data representing intensity in one of three colors.
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1D3 starts by placing all the training examples at the root node of the tree. An attribute is
selected (0 partition the data. For each value of the attribute., a branch is crecated ant] the
corresponding subset of examples that have the attribute value specified by the branch arc moved to
the newly created child node. The algorithm is applied recursively to cach child node until either all
examples at a node arc of one class, or all the examples at that node have the same values for all the
attributes. Every leaf in the decision tree represents a classification rule.

Note that the critical decision in such atop-down decision tree generation algorithm is the
choice of attribute at a node. The attribute selection in 1133 and C4is based on minimizing an
information entropy measure applied to the examples at a node. The measure favors attributes that
result in partitioning the data into subsets that have low class entropy. A subset of data has low
class entropy when the majority of examples in it belong to asingle class. The algorithm basically
chooses the attribute that provides the locally maximumdegree of discrimination between classes.
For a detailed discussion of the information entropy selection criterion see [Quin86, Fayy91].

2.2. Tne GID3* AND O-BTREE AL GO RITHMS

The criterion for choosing the attribute clearly determines whether a “good” or “bad” tree is
generated by the algorithm?. Since making the optimal attribute choice is computationally infeasible,
1D3 utilizes a heuristic criterion which favors the attribute that results in the partition having the least
information entropy with respect to the classes. This is generally a good criterion and often results
in relative] y good choices. 1 lowever, there arc weaknesses inherent in the 1D3 algorithm that are
duc mainly to the fact that it creates a branch for each value of the attribute chosen for branching.
The overbranching problem in 13 leads to several probels, Since in general it may be the case that
only asubset of values of an attribute arc of relevance to the classification task while the rest of the
values may not have any special predictive value for the classes. These extra branches arc harmful
in three ways [bayy91 ,FFayy93a]:

1. They result in rules that arc overspecialized. The leaf nodes that are the descendants of the nodes
created by the extraneous branches will be conditioned on particular irrelevant attribute valucs.

2. They unnecessarily partition the data, thus reducing the number of examples at cach child node.
The subsequent attribute choices made at such child nodes will be based on an unjustifiably
reduced subset of data. The quality of such choices is thus unnecessarily red uced.

3. They increase the. likelihood of occurrence of the missing branches problem. This problem
occurs because not every possible combination of attribute values is present in the examples (see
[1:ayy91, Fayy93a] for more details).

The GID3* algorithm was designed mainly to overcome this problem. It utilizes a vector
distance measure applied to the class vectors of anexample partition, in conjunction with the
entropy measure, to create for each attribute a phantom attribute that has only a subset of the
origina attribute’s values. We generalized the 113 algorithm so that it does not necessarily branch
on each valuc of the chosen attribute, G11>3* can branch on arbitrary individual values of an
attribute and"lump" the rest of the valucs in asingle default branch.Unlike the other branches of
the tree which represent a single valuc, the default branch represents a subset Of values Of an
attribute. Unnecessary subdivision of the data may thus be reduced. See [ ayy91,Fayy93a] for
more dctails and for empirical evidence of improvement.

The O-Btree agorithm [Fayy92b] was designed to overcome problems with the inform ation
entropy selection measure itself. O-Btree creates strictly binary trees and utilizes a measure from a
family of measures (C-SEP) that detects class separation rather than class impurity. Information
entropy is a member of the class of impurity measures. O-Btree employs an orthogonality measure
rather than entropy for branching.For details on problem with entropy mecasures and empirical
evaluation of O-Btree, the reader 1sreferred to [Fayy91,Fayy92b].

Both O-Btree and GID3* differ from 113 and C4 along one additional aspect: the discretization
algorithm usc d at each node to discre tize continuous-valued attrib utes. Whereas 1D3 and C4 utilize a
binary interval discretization agorithm, wc utilize a genceralized version of thatalgorithmm which

2 See [Fayy90,Fayy91] for the details of what we formally mean by one decision tree being better than another
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derives multiple intervals rather than strictly two. For details and empirical tests showing that this
algorithm does indeed produce better trees sce [Fayy91,Fayy93b). We have found that this ability
dots improve performance considerably in several domains.

2.3. TnHe RULER SY STEM

‘1'here arc limitations to decision tree generation algorithms that derive from the inherent fact
that the classification rulcs they produce originate from a single tree. This fact was recognized by
practitioners early on [Brei94,Quin87]. Tree pruning is used to overcome the fact that in any good
tree there arc aways lcaves that arc overspecialized or predict the wrong class. The very reason
which makes decision tree generation cfficient: the fact that data is quickly partitioned into ever
smaller subsets, is also the reason why overspecialization or incorrect classification occurs. It is
our philosophy that once we have good, efficient, decision tree generators, they could be used to
generate multiple trees and only the best rules in each tree arc kept. We initially developed the RIST
system [Chen90] which later evolved into the RULE:R system to implement such a scheme. Figure
1 gives an overview of the RULER system.

RULER starts with a data set, and randomly divides it into a training subset and test subset. A
decision tree IS generated from the training set and itSrules arc tested on the corresponding test set.
Using Fisher's exact test [Finn63] (the exact hypergeometric (distribution) RUILER evaluates each
condition in a given rule’s preconditions for relevance to the class predicted by the rule. It computes
the probability that the condition is correlated with the class by chance 3. If this probability is
higher than a smallthreshold (say 0.01), the condition is deemed irrelevant and is pruned. In
addition, RULER also mecasures the merit of the entire rule by applying the test to the entire
precondition as a unit. This process serves as a filter which passes only robust, general, and
correct rules.

By gathering alarge number of rules through iterating on randomly subsampled training sets,
RUILER builds a large rule base of robust rules that collectively cover the entire original data set of

Architeclture of RULER gy stem.
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Figure 1. Architecture of the RULER Rule Induction System

3 The Chi-square test is actually an approximation to Fisher's exact test when the number of test examples is large. We
use Fisher's exact test because it is robust for small and large data sets,
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examples, A greedy covering algo rithmis thenemployedto select @ minimal subset of rules
that covers the examples. The set is minimal in the sense that no rule could be removed without
losing complete coverage of the original training sct.

Using this method, wc can typically produce a robust set of rules that has fewer rules than any
of the original decision trees that were used to create it. Furthermore, any learning algorithm that
produces rules can be used as the rule generating component. We usc decision tree agorithms
because they constitute a fast and efficient method for generating a set of rules from a training set.
This allows us to iterate many times without requiring extensive amounts of time and computation.

Now that we have covered all the relevant components of the learning system, wc shall turn
our attention to the task of automating sky objcct classification.

3. CLASSIFYING SKY OBJE CTS

Duc to the large amounts of data being collected, a manual approach to classifying sky objects
in the images is infeasible (it would rcquire on the order of tens of man years). Existing
computational methods for processing the images will preclude the identification of the majority of
objectsin each image since they arc at levels too faint for traditional recognition algorithms or even
manual inspection/analysis approaches. Our main objective is to provide an effective, objective,
and examinable basis for classifying sky objects.

The photographic plates collected from the survey are being digitized at the Space Telescope
Science Institute (STScl). This process will result in about 3,000 digital images of roughly
23,0002 pixels each. l.ow-level image processing and object separation is performed by the
FOCAS image processing software developed at Belll.abs [Jarv81,Vald82]. In addition to
defining the objects in each image, ¥ OCAS also produces basic attributes describing each object. A
digitized plate is subdivided into a set of partially overlapping frames. Each frame represents a small
part of the plate that is small enoughtobe manipulated and processed conveniently, Figure2
depicts the ove.rail architecture of the SKICAT System. The discussion below will explain the loop
in the bottom left-hand comer in which machine learning is employed in the attribute measurcment
process. The image processing steps that a digitized plate goes through are:

1. Select a frame from the digitized plate.

2. Letection: detect contiguous pixels in the image that arc to be grouped as one object (standard
image processing).

3.Perform more accurate local sky determination for each detected object.

4. Yvaluate parameters for each object independently: we initially mcasured 18 b~{sc-level
att ributes.

5. Split objects that arc "blended" together and re-cvaluate attributes.

6.AUTOPSY: select a subset of the objects in the frame and designate them as being "surc-
thing” stars, form PSF template (see below).

7. Measure resolution scale and resolution fraction attributes for each object: These arc obtained
by fitting the object to the PSI template of sure-thing stars formed in step 6.

8. Measure additional normalized attributes (bringing total attributes to 40)

9. Classify objects in image.

All steps arc automated except for steps 6 and 9. Step 6 needs further elaboration. The goal of
this step is to define the two resolution attributes mentioned in step 7. These attributes arc
parameters of a template defined on a point spread function (PSF). The templ ateis computed over a
subset of objects identified as sure-thing stars, The surc-thingstarsarc selected by the astronomer.
They represent the "archetypal” starsin that image, Once the stars arc selected, the template fitting
and resolution parameter measurements arc computed automatically. Thus in order to automate steps

1-8 wc need to automate the star selection step (6). We refer to this problem as the star selection
subproblem.
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Figure 2. Architecture of the SKI CAT System

Thirty base-level attributes are measured in step 4. These are generic quantities used typically
used in astronomical analyses [Vald82]. A subset of these is listed below.
- isophotal magnitude
isophotal area
core magnitude
core luminosity
sky brightness
sky sigma (variance)
image moments (8): irl,ir2,ird,r1, r2, ixx, iyy, anti ixy.
cceentricity  (ellipticity)
orientation
Semi-major axis
Ssemi-minor axis.
Once allattributes, including the resolution attributes, for each object arc mcasured, step 8 involves
performing the fina classification for the purposes of the catalog. Wc are currently classifying
objects into four major categorics: star (s), star with fuzz (sf), galaxy (g), and artifact (long). We
may later refine the classification into more classes, however, classification into one of the four
classesrepresents our initial goal.

3.1. C1, ASSIFYING FAINT OBJECTS AND THE USE OF CCD IMAGE S

in addition to the scanned photographic plate, wc have access to CCD images that span several
small regions in some of the frames. CCI images arc obtained from a separate tclescope. The main
advantage of a CCDimage is higher resolution and signs]-to-noise ratio at fainter levels. Hence,
many of the objects that arc too faint to be classificd by inspection of a photographic plate, arc easily
classifiable in a CCI image. inaddition to using these images for photometric calibration of the
photographic plates, we make use of CCDimages in two very important ways for the machine
learning aspect:
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1. CCD images enable us to obtain class labels for faint objects in the photographic plates.
2. CCDimages provide us with the means to reliably evaluate the accuracy of the classifiers
obtained from the decision tree learning algorithms,

Recall that the image processing package FOCAS provides the measurements for the base-level
attributes (and the resolution attributes after star selection) for each object in the image. in order to
produce a classifier that classifies faint objects correctly, the learning algorithm needs training data
consisting of faint objects labeled with the appropriate class. The class |abel is therefore obtained by
examining the CCD frames. Once trained on properly labeled objects, the learning algorithm
produces a classifier that is capable of properly classifying objects based on the values of the at-
tributes provided by FOCAS. Hence, in principle. the classifier will be able to classify objects in
the. photographic image that arc simply too faint for an astronomer to classify by inspection. Using
the class labels, the learning algorithms are basically being used to solve the more difficult problem
of separating the classes in the multi-dimensional space defined by the set of attributes derived via
image processing. This method is expected to allow us to classify objects that arc at Icast one
magnitude fainter than objects classified in photographic sky surveysto date.

3,2. RESULTS FOR THE CLASSIFICATION PROB LEM

Starting with digitized frames obtained from a single digitized plate, we performed initial tests
to evaluate the accuracy of the classifiers produced by the machine learning algorithms 1133, G1D3#,
and O-13 Tree. The data consisted of objects collected from four different plates from regions for
which we had CCD image coverage (since this is data for which true accurate classifications are
available). The learning algorithms arc trained on a data set from 3 plates and tested on data from
the remaining plate for cross validation. This estimates our accuracy in classifying objects across
plates. Note that the plates cover different regions of the sky and that CCI> frames cover multiple
minute portions of each plate. The training data consisted of 1,688 objects that were classified
manually by one of the authors (NW) by examining the corresponding CCD frames. It is
noteworthy that for the majority of these objects, the astronomer would not be able to determince the
classes by examining the corresponding survey (digitized photographic) images. All attributes used
by the learning algorithms arc derived from the survey images and not from the higher resolution
CCD flames.

Using all the attributes derived in step (8) including the two resolution attributes derived in step
('7), the classification results are shown in Table 1.

11)3

GID3*

O-Btree

RULER _

# ules

accuracy

#rules

aceuracy

#iules

accuracy

#rules

accuracy

73

75.6%

58

90.1940

o4

91.296

45

94.2%

‘I'ablel. Summary of results using all attributes.

The results for RULLER above are shown for using O-Btree as the decision tree generation
component and were obtained by cycling through tree generation and rule merging 10 times. Using
IN3, the results were not as good: the accuracy in this case was only around 85%. Results with
using GID3*as the tree generating component for ruler are similar to O-Btree's.

However, when the same experiments were conducted without using the resolution scale and
resolution fraction attributes of step 6, the results were significant! y worse. The error rates jumped
above 20% for O-B” Jret, above 25% for G11>3*, and above 30% for 1133. The respective sizes of
the trees grew significantly as well.

The initial results may be summarized as follows:
1. Algorithms G1D3* and O-BTree produced significantly better trees than 11)3.
2. [classification accuracy results of better than 90% were obtained when using two user-de-
fined attributes: resolution fraction and resolution scale.
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3. Classification results were not as reliable and stable if we exclude the two resolution
attributces.
We took this as evidence that the resolution att ributes are very important for the classification task.
Hence we turned to addressing the star selection subproblem in order to automate step 6 above.
Furthermore, the results point out that the GIID3* and O-BTrec learning algorithms arc more
appropriate than 1D3 for the final classification task. As cxpected, the use of RUILER resulted in
improvement in performance.

3.3. AUTOMATING THE STAR SELECTION PROCESS

Based on theinitial results of the previous section, it was determined that using the resolution
attributes is necessary since without them the error rates were significantly worse. Wc do not have
the option of leaving star selection as a manual step in the process, since it is a time consuming task
and will easily become the bottleneck in the system. We decided to usc amachine learning approach
to solve the star selection subproblem.

The star selection subproblem is a binary classification problem. Given a set of objectsin an
image, the goal is to classify them as sure-thing stars and non-sure-thing stars. Unlike the overall
classification problem, the star selection problem turned out to bc a much easier classification
problem. The data objects from all three plates described above were classified manually by one of
the authors (NW. ) into sure-slars, non-sure-stars, and unknowns. The goal of the learning
subproblem iSto construct classifiers for selecting out sure-stars from any collection of sky objects.
The results of applying the learning algorithms to the data sets described above, using only the
attributes dc.rived in step 5 of course, gave the results shown in Table 2.

D3 I GID3* | O-Btree
#rules | accuracy | #iales | accuracy || #rules | accuracy
4] | 95% " 35 | 97.3% " 29 | 98.7%

Table 2. Summary of results using all attributes.

In this case, using RULER with O-Btree did not change the results significantly. Note that a
98.770 accuracy rate on this subproblem is more than sufficient to indicate that this subproblem is
essentially completely solved. Consequently, this allows us to automate al the steps in the plate
processing and obtain an overall classification rate of better than 94% as shown in “I’able 1. One
note about this learning subproblem: the results reflect the accuracy in selecting sure-thing stars and
not the classification error rate. in other words, we only care about the performance in terms of
sure-thing stars selected correctly. Sure-stars classified as galaxies or unknowns dots not concern
us since all wc need is asubset of good stars to fit the PSI template to. Since this is not the main
classification task, wc only present the relevant performance aspects to avoid confusion.

3.4. CR OSS-PLATE ROBUSTNISS & COMPARISON WITH NEURAL NE TS

Inorder to achieve stable classification accuracy results on classifying data from different
plates, wc had to spend some effort in defining some normalized attributes that arc less sensitive to
plate-to-plate variation. It was determined that the base-level attributes such as area, background-
sky-levels, and average intensity arcimage-dependent as wcll as object-dcpendent. It was also
determined that a new set of user-defined attributes needed to be formulated. These attributes were
to be computed automatically from the data, anti arc defincd such that their values would bc
norma lized across images and plates. A typical technique we used to derive such attributes is to
derive non-linear curves in two dimensions defined by two of the base-level attributes and then
define a new attribute to be the distance of each object in the 2-ID plane to that curve. These
quantitics arc ones that astronomers usc, and many of them have physical interpretations.

It is beyond the scope of this paper to give the detailed (definitions of these ncw attributes. As
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cxpected, defining the ncw “normalized” attributes raised our performance on both intro- and intes -
plate classification toacceptable levels varying between 92% and98%accuracy with anaverage of
94%, Note that without these derived attributes the cmss-plate classification accuracy drops to
60%-80% levels when classifying data from different plates. Our encoding of the.sc attributes
represents an implicit imparting of morec domain knowledge to the Icarning algorithm.

In order to compare against other learning algorithms, and to prectude the possibility that a
decision tree based approach isimposing « priori limitations on the achievable classification levels,
wc tested scveral neural network algorithms for comparison. The results indicate that neural
network algorithms achicve similar, and sometimes worse performance than the decision trees. The
neural net lcarning algorithms tested were:

1. traditional backpropagat ion,

2. conjugate gradient optimization, and

3. variable metric opti mization.
Unlike backpropagation, the latter two are training algorithms work in batch mode and use standard
numerical optimization techniques in clinging the network weights [Hcrt91 ). They compute the
weight adjustments simultaneously using matrix operations based on the total crror of the network on
theent irc ‘training set. Their main advantage over traditional backpropagation is the significant speed-
up intraining time.

The results can be summarized as follows: The performance of the neural networks was fairly
unstable and produced accuracy levels varying between 30% (no convergence) and 95%. The most
common range of accuracy on average was between 76% and 84%. Note that we had to perform
multiple trials, each time varying:

1. the number of internal nodes in the (single) hidden layer,
2. theinitial weight settings for a given network architecture, and
3. the learning rate constant for backpropagation,

Upon examining the results of the empirical evaluation, WC concluded that the neural net
approach did not offer any clear advantages over the decision tree based lcarning algorithm.
Although neural networks, with extensive training and several training restarts with different initial
weights to avoid local minima, could match the performance of the decision tree classifier, the
decision tree approachstill holds several major advantages. The most important is that the tree is
casy for domain experts to understand. In addition, unlike ncural network learning algorithms, the
decision tree learning algorithms GI1D3* and O-B'Tree do not require the specification of parameters
such as the size Of the n curalnet,the number Of hidden layers, and random trials with different
initial weight settings. Also, the required training timeis orders of’ magnitude faster than the training
time required for ancural network approach.

The stability of the performance of the decision tree algorithms, and the fact that a decision tree
(or classification rule) is a lot easier to interpret and understand than a ncural network, wc decided
to adopt t he decision tree approach in this domai n.

3.5. VERIFICATION ANI) RELIABILITY K STIMATES

As mentioned earlier, in addition to using the CCI> frames to derive training data for the
machine learning algorithms, wc also use them to verify and estimate the performance of our
classification technique. Thisis done by testing on data sets that arc drawn independently from the
training data. An additional source of internal consistency checks comes from the fact that the
plates, and the frames within cach plate are partially overlapping. Hence, objects inside the
overlapping regions will be classified in more than onc context. By measuring the rate of conflicting
classifications, we can obtain further estimates of the statistical confidence in the accuracy of our
classifier. For the purposesof the final catalog production, a method is being desig ned for

resolving conflicts on objects within regions of overlap. Wc have not yet collected reportable results
on this aspect of the problem.
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Figure 3. An illustrative example: four faint sky objects.

In order to demonstrate the difficulty and significance of the classification results presented so
far, consider the example shown in Figure 3. This figure shows four image patches cach centered
about an object that was classified by SKICAT asagalixy. These images were obtained from a
plate that was not provided to SKICA' in the training cycle, According to several astronomers, the
objects shown in Figure 3 do notappear to be galaxics. AS amatter Of fact, an astronomer visually
inspecti ng these images would be hard pressed to decide whether they arc stars or galaxies.
However, in every one of these cases, upon retrieving the corresponding higher resolution CCI>
images of these objects, it was very clear that they were indeed galaxies. Note that SKIC AT
produced the prediction based on the lower resolution survey images (shown in the figure). This
example illustrates how the SKICAT classifier can correctly classify the majority of faint objects
which even the astronomers cannot classify. Indeed, the results indicate that SKICAT performs this
task with an accuracy better than 91% (for the faintcst objects in the survey).

4 . CONCLUSIONS AND FUTURE WORK

In this paper, we gave a brief overview’ of the machine lcarning techniques we used for
automating the sky object cataloging problem. The SKICATT system IS expected to speed up catalog
generation by onc to two orders of magnitude over traditional manualapproaches to cataloging.
This should significantly reduce the cost of cataloguing survey images by the equivalent of tens of
astronomer mm-years. in addition, SK 1CAT classTfieg objects that arc at least one MAagniude fainter
than objects cataloged in previous surveys. Yinally, this projectrepresents a step towards the
development of an objective, reliable automated sky object classification method.

The initial results of our effort to automate sky object classification in order to antomatically re-
duce the images produced by (1 SS-II o sky catalogs arc indeed very encouraging. We have
exceeded our Initlal accuracy targetof 90%. This level of accuracy is required for the data to be
useful in testing or refuting theories on the FOrMéion of largestructurein e Universe and on other
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phenomenaof interest to astronomers,

In addition to using machine learning techniques to automate classification, wc used them to aid
in the attribute measurement process. Since mecasurementof the resolution attributes requires
interaction with the user insclecting sure-thing stars for template fitting, we used the same machine
learning approach to automatc the star selection process. By defining additional "normalized"
image-independent attributes, we were able to obtain high accuracy classifiers for star selection
within and across photographic plates. ‘I'his in turn allows us to automate the computation of the
powerful resolution attributes for each object in an image.

Final object classification will be,to some extent, alsoa matter of scientific choice. While
objects in every catalog will contain a classification entry, all of the object attribute.s will be recorded
as well. One could therefore reclassify any portion of the survey using alternative criteria better
suited to a particular scientific goal (e.g. star catalogs vs. galaxy catalogs). The catalogs will also
accommodate additional attribute entries, in the event other pixel-based measurements are deecmed
necessary. An important feature of the survey analysis system will be to facilitate such detailed
interactions with the catalogs. The catalog generated by SKICAT will eventually contain about a
billion entries representing hundreds of millions of sky object. Unlike the traditional notion of a
static printed catalog, wc view our cffortas targeting the development of a new generation of
scientific analysis tools that render it possible to have a constantly evolving anti growing catalog.
Without the availability of these tools for the first survey (POSS-1) conducted over 4 decades ago,
only asmall percentage of the data was used and only specific arcas of interest were studied. In
contrast, wc arc targeting a comprchensive sky catalog that willbe available on-line for the use of
the scientific community.

As part of our plans for the futurc we plan to begin investigation of the applicability of unsu-
pervised learning (clustering) techniques such as AUTOCILASS[Chece88] to the problem of discov-
ering clusters or groupings of interesting objects. The initial goals Will be to answer the following
two questions:

1. Arc the classes of sky objects used currently by astronomers justified by the data: do they
naturally arise in the data?

2. Arc there other classes of objects that astronomers were not aware of because of the difficulty
of dealing with high dimensional spaces defined by the various attributes' ? FHssentially thisis a
discovery problem.

The longer term goal isto evaluate the utility of unsupervised learning techniques as an aid for
the types of analyses astronomers conduct after objects have been classified into known classes.
Typically, astronomers examine the various distributions of different types of objectsto tcs( existing
models of the formation of large-scale structure. in the universe. Armed with prior knowledge about
propertics of interesting clusters of sky objects, a clustering system can search through catalog
entries and point out potentially interesting object clusters to astronomers. This will help

astronomers catch important patterns in the data that may otherwise go unnoticed duc to the sheer
sizc of the data volumes,
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